Sec. 6.3 Vertical Stretches and Compressions

1. Compressions and Stretches

- a. Vertical Stretch if y = f(x) becomes y = a f(x) where a > 1
- b. Vertical Compression if y = f(x) becomes y = a f(x) for 0 < a < 1

- Ex. What would the equation be if the graph of $y = x^3$ is transformed by the following: a. Shift left 2 units and reflect about the x axis: $y = (x + 2)^3$ $y = (x + 2)^3$

b. Shift down 2 units, reflect about the y – axis and stretched vertically by 4: y = x - 2 $y = (-x)^3 - 2$ Ex. Graph the function $f(x) = 3\sqrt{1-x} + 2$ using transformations. Start with the graph of $y = -4x^3 - 2$ the basic function and show all stages.

Transform F(x) = TX

Ex. The function y = f(x) has the graph shown: Graph the function $g(x) = -\frac{1}{2} f(x + \frac{1}{2})$ Vertical compression 5F 1/2

and down 1(4)

Stretch Factors and Average Rates of Change:

If $g(x) = k \cdot f(x)$, then on any interval, Average rate of change of $g = k \cdot (Average rate of change of <math>f$).

Ex. The function s(t) gives the distance (miles) in terms of time (hours). If the average rate of change of s(t) on $0 \le t \le 4$ is 70 mph, what is the average rate of change of % s(t) on this interval?

Ex. Find the vertical stretch of the graph $f(x) = 4x^2 - 2x + 2$ by hand through completing the square. Find the vertex, intercepts, and graph by hand from the original quadratic function.

HW: pg 246-249, #3-42 (m/3)